jueves, 3 de junio de 2010

Vector

Un vector es utilizado para representar una magnitud física el cual necesita de un módulo y una dirección (u orientación) para quedar definido.

Los vectores se pueden representar geométricamente como segmentos de recta dirigidos o flechas en planos \R^2 o \R^3; es decir, bidimensional o tridimensional.

Ejemplos
  • La velocidad con que se desplaza un móvil es una magnitud vectorial, ya que no queda definida tan sólo por su módulo (lo que marca el velocímetro, en el caso de un automóvil), sino que se requiere indicar la dirección hacia la que se dirige.
  • La fuerza que actúa sobre un objeto es una magnitud vectorial, ya que su efecto depende, además de su intensidad o módulo, de la dirección en la que opera.

Magnitudes escalares y vectoriales [editar]

Representación gráfica de una magnitud vectorial, con indicación de su punto de aplicación y de los versores cartesianos.
Representación de los vectores.

Frente a aquellas magnitudes físicas, tales como la masa, la presión, el volumen, la energía, la temperatura, etc; que quedan completamente definidas por un número y las unidades utilizadas en su medida, aparecen otras, tales como el desplazamiento, la velocidad, la aceleración, la fuerza, el campo eléctrico, etc., que no quedan completamente definidas dando un dato numérico, sino que llevan asociadas una dirección. Estas últimas magnitudes son llamadas vectoriales en contraposición a las primeras que son llamadas escalares.

Las magnitudes escalares quedan representadas por el ente matemático más simple; por un número. Las magnitudes vectoriales quedan representadas por un ente matemático que recibe el nombre de vector. En un espacio euclidiano, de no más de tres dimensiones, un vector se representa por un segmento orientado. Así, un vector queda caracterizado por los siguientes elementos: su longitud o módulo, siempre positivo por definición, y su dirección, determinada por el ángulo que forma el vector con los ejes de coordenadas. Así pues, podemos enunciar:

Un vector es una magnitud física que tiene módulo, dirección y sentido.[1] [2]

Se representa como un segmento orientado, con una dirección o recta soporte del vector, dibujado de forma similar a una "flecha" en uno u otro sentido, su longitud representa el modulo del vector.[3]

Notación

Las magnitudes vectoriales se representan en los textos impresos por letras en negrita, para diferenciarlas de las magnitudes escalares que se representan en cursiva. En los textos manuscritos, las magnitudes vectoriales se representan colocando una flechita sobre la letra que designa su módulo (que es un escalar). Ejemplos:

  • \mathbf A, \ \mathbf a,\ \boldsymbol{\omega}, ... representan, respectivamente, las magnitudes vectoriales de módulos A, a, ω, ... El módulo de una magnitud vectorial también se representa encerrando entre barras la notación correspondiente al vector: |\mathbf A|, \ |\mathbf a\,\ |\boldsymbol{\omega}|, ...
  • En los textos manuscritos escribiríamos: \vec A, \ \vec a,\ \vec{\omega},... para los vectores y |\vec A|, \ |\vec a|,\ |\vec {\omega}|,... o A, \ a,\ {\omega},... para los módulos.

Cuando convenga, representaremos la magnitud vectorial haciendo referencia al origen y al extremo del segmento orientado que la representa geométricamente; así, designaremos los vectores representados en la Figura 2 en la forma  \mathbf A = \text{MN}, \mathbf B=\text{OP} \,, ... resultando muy útil esta notación para los vectores desplazamiento.

Además de estas convenciones los vectores unitarios o versores, cuyo módulo es la unidad, se representan frecuentemente con un circunflejo encima, por ejemplo \hat\mathbf{u}, \hat\mathbf{v}.

Tipos de vectores

Según los criterios que se utilicen para determinar la igualdad o equipolencia de dos vectores, pueden distinguirse distintos tipos de los mismos:

  • Vectores libres: no están aplicados en ningún punto en particular.
  • Vectores deslizantes: su punto de aplicación puede deslizar a lo largo de su recta de acción.
  • Vectores fijos o ligados: están aplicados en un punto en particular.

Podemos referirnos también a:

  • Vectores unitarios: vectores de módulo unidad.
  • Vectores concurrentes: sus rectas de acción concurren en un punto propio o impropio (paralelos).
  • Vectores opuestos: vectores de igual magnitud, pero dirección contraria.
  • Vectores colineales: los vectores que comparten una misma recta de acción.
  • Vectores coplanarios: los vectores cuyas rectas de acción son coplanarias (situadas en un mismo plano).

Componentes de un vector

Componentes del vector.

Un vector en el espacio se puede expresar como una combinación lineal de tres vectores unitarios o versores perpendiculares entre sí que constituyen una base vectorial.

En coordenadas cartesianas, los vectores unitarios se representan por  \mathbf{i} \,,  \mathbf{j} ,  \mathbf{k} , paralelos a los ejes de coordenadas x, y, z positivos. Las componentes del vector en una base vectorial predeterminada pueden escribirse entre paréntesis y separadas con comas:

 \mathbf{a} = (a_x,a_y,a_z)

o expresarse como una combinación de los vectores unitarios definidos en la base vectorial. Así, en un sistema de coordenadas cartesiano, será

\mathbf{a} = a_x \, \mathbf{i}+ a_y \, \mathbf{j} + a_z \, \mathbf{k}

Estas representaciones son equivalentes entre sí, y los valores ax, ay, az, son las componentes de un vector que, salvo que se indique lo contrario, son números reales.

Una representación conveniente de las magnitudes vectoriales es mediante un vector columna o un vector fila, particularmente cuando están implicadas operaciones matrices (tales como el cambio de base), del modo siguiente:

\mathbf{a} = \begin{bmatrix}  a_x\\  a_y\\  a_z\\ \end{bmatrix} \qquad  \mathbf{a} = [ a_x\ a_y\ a_z ]

Con esta notación, los versores cartesianos quedan expresados en la forma:

{\mathbf i} = [1\ 0\ 0],\ {\mathbf j} = [0\ 1\ 0],\ {\mathbf k} = [0\ 0\ 1]

No hay comentarios:

Publicar un comentario